Band structure engineering through orbital interaction for enhanced thermoelectric power factor Citation

نویسندگان

  • Zhu
  • Hong
  • Wenhao Sun
  • Rickard Armiento
  • Predrag Lazic
  • Gerbrand Ceder
  • Hong Zhu
چکیده

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure-induced insulator-to-metal transitions for enhancing thermoelectric power factor in bismuth telluride-based alloys.

First-principles calculations revealing insulator-to-metal transitions in Bi2Te3 and Bi2Te2Se, at 9 GPa and 12.5 GPa, respectively, match with prior experiments. Our electronic band structure calculations and accompanying Boltzmann transport calculations of thermoelectric properties for Bi2-xSbxTe2-ySey alloys explain and predict large power factor changes induced by pressure. Complex band dege...

متن کامل

Designing high-performance layered thermoelectric materials through orbital engineering

Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet succes...

متن کامل

Full-Band Calculations of Thermoelectric Properties of Si Nanowires and Thin Layers

Low-dimensional semiconductors are considered promising candidates for thermoelectric applications with enhanced performance because of a drastic reduction in their thermal conductivity, κl, and possibilities of enhanced power factors. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents atomistic simulations for the electronic, thermal, and ...

متن کامل

Transport properties and valence band feature of high-performance (GeTe)85(AgSbTe2)15 thermoelectric materials

This paper aims at elucidating the origin of the high thermoelectric power factor of p-type (AgxSbTex/2+1.5)15(GeTe)85 (TAGS) thermoelectric materials with 0.46 x 6 1.2. All samples exhibit good thermoelectric figures of merit (zT) which reach 1.5 at 700K for x = 0.6. Thermoelectric and thermomagnetic transport properties (electrical resistivity, Seebeck, Hall and transverse Nernst–Ettinghausen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014